Difference between revisions of "Csch"

From specialfunctionswiki
Jump to: navigation, search
m (Tom moved page Hyperbolic cosecant to Csch)
Line 1: Line 1:
[[File:Complex Csch.jpg|500px]]
+
The hyperbolic cosecant function is defined by
 +
$$\mathrm{csch}(z)=\dfrac{1}{\sinh(z)},$$
 +
where $\sinh$ denotes the [[Sinh|hyperbolic sine]].
 +
 
 +
<div align="center">
 +
<gallery>
 +
File:Complex Csch.jpg|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{csch}$.
 +
</gallery>
 +
</div>
 +
 
 +
=Properties=
 +
{{:Derivative of hyperbolic cosecant}}
 +
 
 +
<center>{{:Hyperbolic trigonometric functions footer}}</center>

Revision as of 05:39, 20 March 2015

The hyperbolic cosecant function is defined by $$\mathrm{csch}(z)=\dfrac{1}{\sinh(z)},$$ where $\sinh$ denotes the hyperbolic sine.

Properties

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{csch}(z)=-\mathrm{csch}(z)\mathrm{coth}(z),$$ where $\mathrm{csch}$ denotes the hyperbolic cosecant and $\mathrm{coth}$ denotes the hyperbolic cotangent.

Proof

From the definition, $$\mathrm{csch}(z) = \dfrac{1}{\mathrm{sinh}(z)}.$$ Using the quotient rule, the derivative of sinh, and the definition of $\mathrm{coth}$, we compute $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{csch}(z) &= \dfrac{0-\mathrm{cosh}(z)}{\mathrm{sinh}^2(z)} \\ &= -\mathrm{csch}(z)\mathrm{coth}(z), \end{array}$$ as was to be shown.

References

<center>Hyperbolic trigonometric functions
</center>