Difference between revisions of "Sech"

From specialfunctionswiki
Jump to: navigation, search
m (Tom moved page Hyperbolic secant to Sech)
Line 1: Line 1:
[[File:Complex Sech.jpg|500px]]
+
The hyperbolic secant function is defined by
 +
$$\mathrm{sech}(z)=\dfrac{1}{\cosh(z)}.$$
 +
 
 +
<div align="center">
 +
<gallery>
 +
File:Arccos.png|Graph of $\mathrm{arccos}$ on $[-1,1]$.
 +
File:Complex Sech.jpg|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{sech}$.
 +
</gallery>
 +
</div>
 +
 
 +
=Properties=
 +
{{:Derivative of sech}}
 +
 
 +
<center>{{:Hyperbolic trigonometric functions footer}}</center>

Revision as of 05:44, 20 March 2015

The hyperbolic secant function is defined by $$\mathrm{sech}(z)=\dfrac{1}{\cosh(z)}.$$

Properties

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{sech}(z)=-\mathrm{sech}(z)\mathrm{tanh}(z),$$ where $\mathrm{sech}$ denotes the hyperbolic secant and $\mathrm{tanh}$ denotes the hyperbolic tangent.

Proof

From the definition, $$\mathrm{sech}(z) = \dfrac{1}{\mathrm{cosh}(z)}.$$ Using the quotient rule, the derivative of cosh, and the definition of $\mathrm{tanh}$, we see $$\begin{array}{ll} \dfrac{\mathrm{d}}{\mathrm{d}z} \mathrm{sech}(z) &= \dfrac{0-\sinh(z)}{\cosh(z)^2} \\ &=-\mathrm{sech}(z)\mathrm{tanh}(z), \end{array}$$ as was to be shown.

References

<center>Hyperbolic trigonometric functions
</center>