Difference between revisions of "Catalan's constant"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$G=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2} = 0.915 965 594 177 219 015 054 603 514 932 384 110 774 \ldots.$$
 
$$G=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2} = 0.915 965 594 177 219 015 054 603 514 932 384 110 774 \ldots.$$
 
This means that Catalan's constant can be expressed as $\beta(2)$ where $\beta$ is the [[Dirichlet beta function]].
 
This means that Catalan's constant can be expressed as $\beta(2)$ where $\beta$ is the [[Dirichlet beta function]].
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Proposition:</strong> The following formula holds:
 +
$$K=\beta(2),$$
 +
where $K$ is [[Catalan's constant]] and $\beta$ denotes the [[Dirichlet beta]] function.
 +
where
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> proof goes here █
 +
</div>
 +
</div>

Revision as of 01:13, 21 March 2015

Catalan's constant is $$G=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2} = 0.915 965 594 177 219 015 054 603 514 932 384 110 774 \ldots.$$ This means that Catalan's constant can be expressed as $\beta(2)$ where $\beta$ is the Dirichlet beta function.

Properties

Proposition: The following formula holds: $$K=\beta(2),$$ where $K$ is Catalan's constant and $\beta$ denotes the Dirichlet beta function. where

Proof: proof goes here █