Difference between revisions of "Dirichlet beta"
From specialfunctionswiki
m (Tom moved page Dirichlet beta function to Dirichlet beta) |
|||
Line 2: | Line 2: | ||
$$\beta(x) = \displaystyle\sum_{k=0}^{\infty} (-1)^k (2k+1)^{-x} = 2^{-x} \Phi \left(-1,x,\dfrac{1}{2} \right),$$ | $$\beta(x) = \displaystyle\sum_{k=0}^{\infty} (-1)^k (2k+1)^{-x} = 2^{-x} \Phi \left(-1,x,\dfrac{1}{2} \right),$$ | ||
where $\Phi$ denotes the [[Lerch transcendent]]. | where $\Phi$ denotes the [[Lerch transcendent]]. | ||
+ | |||
+ | =Properties= | ||
+ | {{:Catalan's constant using Dirichlet beta}} |
Revision as of 01:14, 21 March 2015
The Dirichlet $\beta$ function is defined by $$\beta(x) = \displaystyle\sum_{k=0}^{\infty} (-1)^k (2k+1)^{-x} = 2^{-x} \Phi \left(-1,x,\dfrac{1}{2} \right),$$ where $\Phi$ denotes the Lerch transcendent.
Contents
Properties
Theorem
The following formula holds: $$K=\beta(2),$$ where $K$ is Catalan's constant and $\beta$ denotes the Dirichlet beta function.