Difference between revisions of "Hurwitz zeta"

From specialfunctionswiki
Jump to: navigation, search
m (Tom moved page Hurwitz zeta function to Hurwitz zeta)
Line 1: Line 1:
 
The Hurwitz zeta function is defined for $\mathrm{Re}(s)>1$,  
 
The Hurwitz zeta function is defined for $\mathrm{Re}(s)>1$,  
 
$$\zeta(s,a)= \displaystyle\sum_{n=0}^{\infty} \dfrac{1}{(n+a)^s}.$$
 
$$\zeta(s,a)= \displaystyle\sum_{n=0}^{\infty} \dfrac{1}{(n+a)^s}.$$
 +
 +
=Properties=
 +
{{:Catalan's constant using Hurwitz zeta}}

Revision as of 01:18, 21 March 2015

The Hurwitz zeta function is defined for $\mathrm{Re}(s)>1$, $$\zeta(s,a)= \displaystyle\sum_{n=0}^{\infty} \dfrac{1}{(n+a)^s}.$$

Properties

Theorem

The following formula holds: $$K=\dfrac{\pi}{24} -\dfrac{\pi}{2}\log(A)+4\pi \zeta' \left(-1 , \dfrac{1}{4} \right),$$ where $K$ is Catalan's constant, $A$ is the Glaisher–Kinkelin constant, and $\zeta'$ denotes the partial derivative of the Hurwitz zeta function with respect to the first argument.

Proof

References