Difference between revisions of "Legendre chi"
From specialfunctionswiki
(Created page with "The Legendre chi function is defined by $$\chi_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$ =Properties= {{:Catalan's constant using Legendre c...") |
(No difference)
|
Revision as of 01:20, 21 March 2015
The Legendre chi function is defined by $$\chi_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$
Contents
Properties
Theorem
The following formula holds: $$K=-i\chi_2(i),$$ where $K$ is Catalan's constant and $\chi$ denotes the Legendre chi function.
Proof
Recall, by definition, $$K=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2},$$ and $$\chi_2(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$ Since $i^{2k+1}=i^{2k}i=(-1)^ki$, plugging in $i$ into $\chi_2$ yields $$\chi_2(i) = \displaystyle\sum_{k=0}^{\infty} \dfrac{i^{2k+1}}{(2k+1)^{\nu}}=i \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^{\nu}}=iK.$$ Hence, $$-i\chi_2(i)=-i(iK)=-i^2K=-(-1)K=K,$$ completing the proof. $\blacksquare$