Difference between revisions of "Legendre chi"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Legendre chi function is defined by $$\chi_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$ =Properties= {{:Catalan's constant using Legendre c...")
 
Line 3: Line 3:
  
 
=Properties=
 
=Properties=
 +
{{:Legendre chi in terms of polylogarithm}}
 
{{:Catalan's constant using Legendre chi}}
 
{{:Catalan's constant using Legendre chi}}

Revision as of 01:26, 21 March 2015

The Legendre chi function is defined by $$\chi_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$

Properties

Theorem

The following formula holds: $$\chi_{\nu}(z)=\dfrac{1}{2}[\mathrm{Li}_{\nu}(z)-\mathrm{Li}_{\nu}(-z)] = \mathrm{Li}_{\nu}(z)-2^{-\nu}\mathrm{Li}_{\nu}(z^2),$$ where $\chi$ denotes the Legendre chi function and $\mathrm{Li}_{\nu}$ denotes the polylogarithm.

Proof

References

Theorem

The following formula holds: $$K=-i\chi_2(i),$$ where $K$ is Catalan's constant and $\chi$ denotes the Legendre chi function.

Proof

Recall, by definition, $$K=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^2},$$ and $$\chi_2(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{z^{2k+1}}{(2k+1)^{\nu}}.$$ Since $i^{2k+1}=i^{2k}i=(-1)^ki$, plugging in $i$ into $\chi_2$ yields $$\chi_2(i) = \displaystyle\sum_{k=0}^{\infty} \dfrac{i^{2k+1}}{(2k+1)^{\nu}}=i \displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{(2k+1)^{\nu}}=iK.$$ Hence, $$-i\chi_2(i)=-i(iK)=-i^2K=-(-1)K=K,$$ completing the proof. $\blacksquare$

References