Difference between revisions of "Arctanh"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
[[File:Complex ArcTanh.jpg|500px]]
+
 
 +
<div align="center">
 +
<gallery>
 +
File:Complex ArcTanh.jpg|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{arctanh}$.
 +
</gallery>
 +
</div>
 +
 
 +
=Properties=
 +
{{:Derivative of Legendre chi}}
  
 
<center>{{:Inverse hyperbolic trigonometric functions footer}}</center>
 
<center>{{:Inverse hyperbolic trigonometric functions footer}}</center>

Revision as of 01:33, 21 March 2015

Properties

Theorem

The following formula holds: $$\dfrac{\mathrm{d}}{\mathrm{d}z} \chi_2(z) = \dfrac{\mathrm{arctanh}(z)}{z},$$ where $\chi$ denotes the Legendre chi function and $\mathrm{arctanh}$ denotes the inverse hyperbolic tangent function.

Proof

References

<center>Inverse hyperbolic trigonometric functions
</center>