Difference between revisions of "Champernowne constant"

From specialfunctionswiki
Jump to: navigation, search
Line 4: Line 4:
 
=Properties=
 
=Properties=
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> The Champernowne constant is a transcendental number.
+
<strong>Theorem:</strong> The Champernowne constant is a [[transcendental number]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 01:50, 21 March 2015

The CHampernowne constant is the real number $C_{10}=0.12345678910111213141516171819202122232425\ldots$

Properties

Theorem: The Champernowne constant is a transcendental number.

Proof: