Difference between revisions of "Bateman F"
Line 2: | Line 2: | ||
$$Z_n(x) = {}_2F_2(-n,n+1;1;1;x),$$ | $$Z_n(x) = {}_2F_2(-n,n+1;1;1;x),$$ | ||
where ${}_2F_2$ is a [[generalized hypergeometric function]]. | where ${}_2F_2$ is a [[generalized hypergeometric function]]. | ||
+ | |||
+ | =Properties= | ||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The following formula holds: | ||
+ | $$n^2(2n-3)Z_n(x)-(2n-1)[3n^2-6n+2-2(2n-3)x]Z_{n-1}(x)+(2n-3)[3n^2-6n+2+2(2n-1)x]Z_{n-2}(x)-(2n-1)(n-2)^2Z_{n-3}(x)=0.$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The following formula holds: | ||
+ | $$xZ_n'(x)-nZ_n(x)=-nZ_{n-1}(x)-xZ_{n-1}'(x).$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The following formula holds: | ||
+ | $$xZ_n'(x)-nZ_n(x)=-\displaystyle\sum_{k=0}^{n-1} Z_k(x) - 2x\displaystyle\sum_{k=0}^{n-1} Z_k'(x).$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The following formula holds: | ||
+ | $$xZ_n'(x)-nZ_n(x)=\displaystyle\sum_{k=0}^{n-1} (-1)^{n-k}(2k+1)Z_k(x).$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The following formula holds: | ||
+ | $$\dfrac{1}{1-t} {}_1F_1 \left( \dfrac{1}{2} ; 1 ; -\dfrac{4xt}{(1-t)^2} \right) = \displaystyle\sum_{k=0}^{\infty} Z_n(x)t^n,$$ | ||
+ | where ${}_1F_1$ denotes the [[generalized hypergeometric function]]. | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | =References= | ||
+ | Rainville "Special Functions" | ||
{{:Orthogonal polynomials footer}} | {{:Orthogonal polynomials footer}} |
Revision as of 09:49, 23 March 2015
The Bateman polynomials are orthogonal polynomials defined by $$Z_n(x) = {}_2F_2(-n,n+1;1;1;x),$$ where ${}_2F_2$ is a generalized hypergeometric function.
Properties
Theorem: The following formula holds: $$n^2(2n-3)Z_n(x)-(2n-1)[3n^2-6n+2-2(2n-3)x]Z_{n-1}(x)+(2n-3)[3n^2-6n+2+2(2n-1)x]Z_{n-2}(x)-(2n-1)(n-2)^2Z_{n-3}(x)=0.$$
Proof: █
Theorem: The following formula holds: $$xZ_n'(x)-nZ_n(x)=-nZ_{n-1}(x)-xZ_{n-1}'(x).$$
Proof: █
Theorem: The following formula holds: $$xZ_n'(x)-nZ_n(x)=-\displaystyle\sum_{k=0}^{n-1} Z_k(x) - 2x\displaystyle\sum_{k=0}^{n-1} Z_k'(x).$$
Proof: █
Theorem: The following formula holds: $$xZ_n'(x)-nZ_n(x)=\displaystyle\sum_{k=0}^{n-1} (-1)^{n-k}(2k+1)Z_k(x).$$
Proof: █
Theorem: The following formula holds: $$\dfrac{1}{1-t} {}_1F_1 \left( \dfrac{1}{2} ; 1 ; -\dfrac{4xt}{(1-t)^2} \right) = \displaystyle\sum_{k=0}^{\infty} Z_n(x)t^n,$$ where ${}_1F_1$ denotes the generalized hypergeometric function.
Proof: █
References
Rainville "Special Functions"