Difference between revisions of "Bernoulli B"
From specialfunctionswiki
Line 2: | Line 2: | ||
$$B_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} b_{n-k}x^k,$$ | $$B_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} b_{n-k}x^k,$$ | ||
where $b_k$ are [[Bernoulli numbers]]. | where $b_k$ are [[Bernoulli numbers]]. | ||
+ | |||
+ | $$B_0(x)=1$$ | ||
+ | $$B_1(x)=x-\dfrac{1}{2}$$ | ||
+ | $$B_2(x)=x^2-x+\dfrac{1}{6}$$ | ||
+ | $$B_3(x)=x^3-\dfrac{3x^2}{2}+\dfrac{x}{2}$$ | ||
+ | $$B_4(x)=x^4-2x^3+x^2-\dfrac{1}{30}$$ | ||
=Properties= | =Properties= |
Revision as of 10:00, 23 March 2015
Bernoulli polynomials $B_n$ are orthogonal polynomials defined by the formula $$B_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} b_{n-k}x^k,$$ where $b_k$ are Bernoulli numbers.
$$B_0(x)=1$$ $$B_1(x)=x-\dfrac{1}{2}$$ $$B_2(x)=x^2-x+\dfrac{1}{6}$$ $$B_3(x)=x^3-\dfrac{3x^2}{2}+\dfrac{x}{2}$$ $$B_4(x)=x^4-2x^3+x^2-\dfrac{1}{30}$$
Contents
Properties
Theorem: The following formula holds: $$\dfrac{te^{xt}}{e^t-1} = \displaystyle\sum_{k=0}^{\infty} B_k(x)\dfrac{t^k}{k!}.$$
Proof: █
Theorem
The following formula holds: $$B_n(x)=-n \zeta(1-n,x),$$ where $B_n$ denotes the Bernoulli polynomial and $\zeta$ denotes the Hurwitz zeta function.