Difference between revisions of "Bernoulli B"
(→Properties) |
|||
Line 13: | Line 13: | ||
<strong>Theorem:</strong> The following formula holds: | <strong>Theorem:</strong> The following formula holds: | ||
$$\dfrac{te^{xt}}{e^t-1} = \displaystyle\sum_{k=0}^{\infty} B_k(x)\dfrac{t^k}{k!}.$$ | $$\dfrac{te^{xt}}{e^t-1} = \displaystyle\sum_{k=0}^{\infty} B_k(x)\dfrac{t^k}{k!}.$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The following formula holds: | ||
+ | $$\displaystyle\int_a^x B_n(t) dt = \dfrac{B_{n+1}(x)-B_{n+1}(a)}{n+1}.$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The following formula holds: | ||
+ | $$B_n(mx)=m^{n-1}\displaystyle\sum_{k=0}^{m-1} B_n \left( x + \dfrac{k}{m} \right).$$ | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ |
Revision as of 10:03, 23 March 2015
Bernoulli polynomials $B_n$ are orthogonal polynomials defined by the formula $$B_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} b_{n-k}x^k,$$ where $b_k$ are Bernoulli numbers.
$$B_0(x)=1$$ $$B_1(x)=x-\dfrac{1}{2}$$ $$B_2(x)=x^2-x+\dfrac{1}{6}$$ $$B_3(x)=x^3-\dfrac{3x^2}{2}+\dfrac{x}{2}$$ $$B_4(x)=x^4-2x^3+x^2-\dfrac{1}{30}$$
Contents
Properties
Theorem: The following formula holds: $$\dfrac{te^{xt}}{e^t-1} = \displaystyle\sum_{k=0}^{\infty} B_k(x)\dfrac{t^k}{k!}.$$
Proof: █
Theorem: The following formula holds: $$\displaystyle\int_a^x B_n(t) dt = \dfrac{B_{n+1}(x)-B_{n+1}(a)}{n+1}.$$
Proof: █
Theorem: The following formula holds: $$B_n(mx)=m^{n-1}\displaystyle\sum_{k=0}^{m-1} B_n \left( x + \dfrac{k}{m} \right).$$
Proof: █
Theorem
The following formula holds: $$B_n(x)=-n \zeta(1-n,x),$$ where $B_n$ denotes the Bernoulli polynomial and $\zeta$ denotes the Hurwitz zeta function.