Difference between revisions of "Chebyshev T"

From specialfunctionswiki
Jump to: navigation, search
Line 20: Line 20:
  
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>Theorem (Orthogonality):</strong> The following formulas hold:
+
<strong>Theorem (Orthogonality):</strong> The following formula holds:
 
$$\int_{-1}^1 \dfrac{T_m(x)T_n(x)}{\sqrt{1-x^2}} dx = \left\{ \begin{array}{ll}
 
$$\int_{-1}^1 \dfrac{T_m(x)T_n(x)}{\sqrt{1-x^2}} dx = \left\{ \begin{array}{ll}
 
0 &; m \neq n \\
 
0 &; m \neq n \\
 
\dfrac{\pi}{2} &; m=n\neq 0 \\
 
\dfrac{\pi}{2} &; m=n\neq 0 \\
\pi &; m=n=0
+
\pi &; m=n=0.
\end{array} \right.$$
 
and
 
$$\int_{-1}^1 \dfrac{U_m(x)U_n(x)}{\sqrt{1-x^2}} dx = \left\{ \begin{array}{ll}
 
0 &; m \neq n \\
 
\dfrac{\pi}{2} &; m=n\neq 0\\
 
0 &; m=n=0.
 
 
\end{array} \right.$$
 
\end{array} \right.$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">

Revision as of 10:37, 23 March 2015

Chebyshev polynomials of the first kind are orthogonal polynomials defined by $$T_n(x) = \cos(n \mathrm{arccos}(x)).$$

Properties

Theorem: The polynomials $T_n(x)$ and $U_n(x)$ are two independent solutions of the following equation, called Chebyshev's equation: $$(1-x^2)\dfrac{d^2y}{dx^2}-x\dfrac{dy}{dx}+n^2y=0.$$

Proof:

Theorem: The following formula holds: $$T_{n+1}(x)-2xT_n(x)+T_{n-1}(x)=0.$$

Proof:

Theorem (Orthogonality): The following formula holds: $$\int_{-1}^1 \dfrac{T_m(x)T_n(x)}{\sqrt{1-x^2}} dx = \left\{ \begin{array}{ll} 0 &; m \neq n \\ \dfrac{\pi}{2} &; m=n\neq 0 \\ \pi &; m=n=0. \end{array} \right.$$

Proof:

Orthogonal polynomials