Difference between revisions of "Euler E"

From specialfunctionswiki
Jump to: navigation, search
Line 10: Line 10:
  
 
=Properties=
 
=Properties=
<div class="toccolours mw-collapsible mw-collapsed">
+
{{:Euler E generating function}}
<strong>Theorem:</strong> The following formula holds:
 
$$\dfrac{2e^{xt}}{e^t+1} = \sum_{k=0}^{\infty} \dfrac{E_n(x)t^n}{n!},$$
 
where $e^{xt}$ denotes the [[exponential function]] and $E_n$ denotes an [[Euler E]] polynomial.
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong>
 
</div>
 
</div>
 
 
 
  
 
{{:Orthogonal polynomials footer}}
 
{{:Orthogonal polynomials footer}}

Revision as of 10:55, 23 March 2015

The Euler polynomials $E_n(x)$ are orthogonal polynomials defined by $$E_n(x)=\displaystyle\sum_{k=0}^n {n \choose k} \dfrac{e_k}{2^k} \left( x - \dfrac{1}{2} \right)^{n-k},$$ where $e_k$ denotes an Euler number.

  • $E_0(x)=1$
  • $E_1(x)=x-\dfrac{1}{2}$
  • $E_2(x)=x^2-x$
  • $E_3(x)=x^3-\dfrac{3}{2}x^2+\dfrac{1}{4}$
  • $E_4(x)=x^4-2x^3+x$

Properties

Theorem

The following formula holds for $|z|<\pi$: $$\dfrac{2e^{xt}}{e^t+1} = \sum_{k=0}^{\infty} \dfrac{E_n(x)t^n}{n!},$$ where $e^{xt}$ denotes the exponential function and $E_n$ denotes an Euler E polynomial.

Proof

References

Orthogonal polynomials