Difference between revisions of "Bessel J"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
Bessel functions (of the first kind) of order $\nu$, $J_{\nu}$, have a power series expansion
 
Bessel functions (of the first kind) of order $\nu$, $J_{\nu}$, have a power series expansion
$$J_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{k! \Gamma(k+\nu+1)2^{2k+\nu}}x^{2k+\nu}.$$
+
$$J_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{k! \Gamma(k+\nu+1)2^{2k+\nu}}z^{2k+\nu}.$$
  
 
<div align="center">
 
<div align="center">

Revision as of 07:18, 28 March 2015

Bessel functions (of the first kind) of order $\nu$, $J_{\nu}$, have a power series expansion $$J_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} \dfrac{(-1)^k}{k! \Gamma(k+\nu+1)2^{2k+\nu}}z^{2k+\nu}.$$

Bessel functions of the second kind are defined via the formula $$Y_{\nu}(z)=\dfrac{J_{\nu}(z)\cos(\nu \pi)-J_{-\nu}(z)}{\sin(\nu \pi)}.$$

Properties

Theorem: Bessel functions $J_{\nu}$ and $Y_{\nu}$ are independent solutions of the second-order differential equation $$z^2 y + zy' + (z^2-\nu^2)y=0.$$

Proof:

Theorem: The following formula holds: $$zJ_{\nu}'(z)=\nu J_{\nu}(z) - z J_{\nu+1}(z).$$

Proof:

Theorem: The following formula holds: $$\dfrac{d}{dz}[z^{-\nu}J_{\nu}(z)] = -z^{-\nu}J_{\nu+1}(z).$$

Proof:

Relations to other special functions

Theorem

The following formula holds: $$y_n\left( \dfrac{1}{ir} \right) = \left(\dfrac{\pi r}{2} \right)^{\frac{1}{2}} e^{ir} \left[ \dfrac{J_{n +\frac{1}{2}}(r)}{i^{n+1}}+i^nJ_{-n-\frac{1}{2}}(r) \right],$$ where $y_n$ denotes a Bessel polynomial and $J_{\nu}$ denotes the Bessel J.

Proof

References

Theorem

The following formula holds: $$J_{n +\frac{1}{2}}(r) = (2\pi r)^{-\frac{1}{2}} \left[\dfrac{e^{ir}}{i^{n+1}} y_n \left( -\dfrac{1}{ir} \right) + i^{n+1}e^{-ir}y_n\left( \dfrac{1}{ir} \right) \right],$$ where $J_{n+\frac{1}{2}}$ denotes a Bessel J, $\pi$ denotes pi, $i$ denotes the imaginary number, $e^{ir}$ denotes the exponential, and $y_n$ denotes a Bessel polynomial.

Proof

References

Theorem

The following formula holds: $$J_{-n-\frac{1}{2}}(r) = (2 \pi r)^{-\frac{1}{2}} \left[ i^n e^{ir} y_n \left( -\dfrac{1}{ir} \right)+ \dfrac{e^{-ir}}{i^n} y_n\left( \dfrac{1}{ir} \right) \right],$$ where $J_{-n-\frac{1}{2}}$ denotes a Bessel function of the first kind and $y_n$ denotes a Bessel polynomial.

Proof

References

Videos

Bessel Equation and Bessel functions
Mod-1 Lec-6 Bessel Functions and Their Properties-I
Bessel's Equation by Free Academy
Taylor Series, Bessel, single Variable Calculus, Coursera.org
Ordinary Differential Equations Lecture 7—Bessel functions and the unit step function
Laplace transform of Bessel function order zero
Laplace transform: Integral over Bessel function is one
Orthogonal Properties of Bessel Function, Orthogonal Properties of Bessel Equation

Links

Addition formulas for Bessel functions
Relations between Bessel functions by John D. Cook