Difference between revisions of "Airy zeta function"

From specialfunctionswiki
Jump to: navigation, search
(References)
Line 1: Line 1:
 
The [[Airy functions | Airy function]] $\mathrm{Ai}$ is oscillatory for negative values of $x$. This yields a sequence of zeros $\{a_i\}_{i=1}^{\infty}$. We define the Airy zeta function using these zeros in the following way:
 
The [[Airy functions | Airy function]] $\mathrm{Ai}$ is oscillatory for negative values of $x$. This yields a sequence of zeros $\{a_i\}_{i=1}^{\infty}$. We define the Airy zeta function using these zeros in the following way:
 
$$\zeta_{\mathrm{Ai}}(z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{|a_k|^z}.$$
 
$$\zeta_{\mathrm{Ai}}(z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{|a_k|^z}.$$
It can be shown that
+
 
$$\zeta_{\mathrm{Ai}}(2) = \dfrac{3^{\frac{5}{3}}\Gamma^4(\frac{2}{3})}{4\pi^2}.$$
+
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Proposition:</strong> The following formula holds:
 +
$$\zeta_{\mathrm{Ai}}(2)=\dfrac{3^{\frac{5}{3}}\Gamma^4(\frac{2}{3})}{4\pi^2}.$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 
 
=References=
 
=References=
 
[http://en.wikipedia.org/wiki/Airy_zeta_function Airy zeta function (Wikipedia)]<br />
 
[http://en.wikipedia.org/wiki/Airy_zeta_function Airy zeta function (Wikipedia)]<br />
 
[http://mathworld.wolfram.com/AiryZetaFunction.html Airy zeta function (Mathworld)]
 
[http://mathworld.wolfram.com/AiryZetaFunction.html Airy zeta function (Mathworld)]

Revision as of 23:16, 1 April 2015

The Airy function $\mathrm{Ai}$ is oscillatory for negative values of $x$. This yields a sequence of zeros $\{a_i\}_{i=1}^{\infty}$. We define the Airy zeta function using these zeros in the following way: $$\zeta_{\mathrm{Ai}}(z) = \displaystyle\sum_{k=1}^{\infty} \dfrac{1}{|a_k|^z}.$$

Properties

Proposition: The following formula holds: $$\zeta_{\mathrm{Ai}}(2)=\dfrac{3^{\frac{5}{3}}\Gamma^4(\frac{2}{3})}{4\pi^2}.$$

Proof:

References

Airy zeta function (Wikipedia)
Airy zeta function (Mathworld)