Difference between revisions of "Dirichlet eta"

From specialfunctionswiki
Jump to: navigation, search
Line 3: Line 3:
 
This series is clearly the [[Riemann zeta function]] with alternating terms.
 
This series is clearly the [[Riemann zeta function]] with alternating terms.
  
[[File:Complex Dirichlet eta function.jpg|500px]]
+
<div align="center">
 +
<gallery>
 +
File:Complex Dirichlet eta function.jpg|[[Domain coloring]] of [[domain coloring]] of $\eta(z)$.
 +
</gallery>
 +
</div>
 +
[[500px]]

Revision as of 23:20, 1 April 2015

Let $\mathrm{Re} \hspace{2pt} z > 0$, then define $$\eta(z) = \displaystyle\sum_{n=1}^{\infty} \dfrac{(-1)^{n-1}}{n^s}.$$ This series is clearly the Riemann zeta function with alternating terms.

500px