Difference between revisions of "Epstein zeta function"
From specialfunctionswiki
(Created page with "=References= [http://www.jstor.org/discover/10.2307/1968602?uid=3739744&uid=2129&uid=2&uid=70&uid=4&uid=3739256&sid=21104980545913 On Epstein's Zeta Function]") |
|||
Line 1: | Line 1: | ||
+ | Let $Q(m,n)=cm^2+bmn+an^2$. The Epstein zeta function is | ||
+ | $$\zeta_Q(z)=\displaystyle\sum_{(m,n)\neq (0,0)} \dfrac{1}{Q(m,n)^z}.$$ | ||
+ | |||
=References= | =References= | ||
[http://www.jstor.org/discover/10.2307/1968602?uid=3739744&uid=2129&uid=2&uid=70&uid=4&uid=3739256&sid=21104980545913 On Epstein's Zeta Function] | [http://www.jstor.org/discover/10.2307/1968602?uid=3739744&uid=2129&uid=2&uid=70&uid=4&uid=3739256&sid=21104980545913 On Epstein's Zeta Function] |
Revision as of 00:10, 2 April 2015
Let $Q(m,n)=cm^2+bmn+an^2$. The Epstein zeta function is $$\zeta_Q(z)=\displaystyle\sum_{(m,n)\neq (0,0)} \dfrac{1}{Q(m,n)^z}.$$