Difference between revisions of "Lefschetz zeta function"
From specialfunctionswiki
(Created page with "Let $f$ be a function. The Lefschetz zeta function is $$\zeta_f(z)=\exp \left( \displaystyle\sum_{k=0}^{\infty} L(f^n)\dfrac{z^n}{n} \right),$$ where $L(f^n)$ is the Lefsche...") |
(No difference)
|
Revision as of 00:13, 2 April 2015
Let $f$ be a function. The Lefschetz zeta function is $$\zeta_f(z)=\exp \left( \displaystyle\sum_{k=0}^{\infty} L(f^n)\dfrac{z^n}{n} \right),$$ where $L(f^n)$ is the Lefschetz number of the $n$th iterate of $f$