Difference between revisions of "Prime counting"
From specialfunctionswiki
m (Tom moved page Prime counting function to Prime counting) |
|||
Line 1: | Line 1: | ||
The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula | The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula | ||
$$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x \}.$$ | $$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x \}.$$ | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Primecountingfunction.png|Plot of $\pi(x)$ over $[0,50]$. | ||
+ | File:Primecountingfunctiondividedbyxoverlogx.png|Plot of $\frac{\pi(x)}{x/\log(x)}$ on $[0,1000000]$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
=Properties= | =Properties= |
Revision as of 06:31, 5 April 2015
The prime counting function $\pi \colon \mathbb{R} \rightarrow \mathbb{Z}^+$ is defined by the formula $$\pi(x) = \{\mathrm{number \hspace{2pt} of \hspace{2pt} primes} \leq x \}.$$
- Primecountingfunction.png
Plot of $\pi(x)$ over $[0,50]$.
- Primecountingfunctiondividedbyxoverlogx.png
Plot of $\frac{\pi(x)}{x/\log(x)}$ on $[0,1000000]$.
Properties
Theorem (Prime Number Theorem): The function $\pi(x)$ obeys the formula $$\lim_{x \rightarrow \infty} \dfrac{\pi(x)}{\frac{x}{\log(x)}}=1.$$
Proof: