Difference between revisions of "Chi"
From specialfunctionswiki
(Created page with "The hyperbolic cosine integral $\mathrm{chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula $$\mathrm{chi}(z)=\gamma + \log(z) + \displaystyle\int_0^z \df...") |
|||
Line 8: | Line 8: | ||
</gallery> | </gallery> | ||
</div> | </div> | ||
+ | |||
+ | {{:*-integral functions footer}} |
Revision as of 06:53, 5 April 2015
The hyperbolic cosine integral $\mathrm{chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula $$\mathrm{chi}(z)=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\mathrm{cosh}(t)-1}{t} dt,$$ where $\gamma$ denotes the Euler-Mascheroni constant, $\log$ denotes the logarithm, and $\mathrm{cosh}$ denotes the hyperbolic cosine function.
- Coshintegral.png
Graph of $\mathrm{chi}$ on $(0,5]$.