Difference between revisions of "Chi"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The hyperbolic cosine integral $\mathrm{chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula $$\mathrm{chi}(z)=\gamma + \log(z) + \displaystyle\int_0^z \df...")
 
Line 8: Line 8:
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 +
 +
{{:*-integral functions footer}}

Revision as of 06:53, 5 April 2015

The hyperbolic cosine integral $\mathrm{chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula $$\mathrm{chi}(z)=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\mathrm{cosh}(t)-1}{t} dt,$$ where $\gamma$ denotes the Euler-Mascheroni constant, $\log$ denotes the logarithm, and $\mathrm{cosh}$ denotes the hyperbolic cosine function.

$\ast$-integral functions