Difference between revisions of "Q-Pochhammer"
From specialfunctionswiki
m (Tom moved page Q-Pochhammer symbol to Q-Pochhammer) |
|||
Line 4: | Line 4: | ||
$$(a;q)_{-n}=\dfrac{1} {(aq^{-n};q)_n} =\dfrac{1} {(1-aq^{-n})\ldots(1-aq^{-1})} = \dfrac{q^{\frac{n(n+1)}{2}}(-1)^n}{a^n (\frac{q}{a};q)_n}$$ | $$(a;q)_{-n}=\dfrac{1} {(aq^{-n};q)_n} =\dfrac{1} {(1-aq^{-n})\ldots(1-aq^{-1})} = \dfrac{q^{\frac{n(n+1)}{2}}(-1)^n}{a^n (\frac{q}{a};q)_n}$$ | ||
− | + | <div align="center"> | |
+ | <gallery> | ||
+ | File:Qpochhammer(q,q)infty.png|Plot of $(q,q)_{\infty}$ for $q \in [-1,1]$. | ||
+ | </gallery> | ||
+ | </div> | ||
+ | |||
+ | |||
+ | {{:q-calculus footer}} |
Revision as of 06:59, 5 April 2015
$$(a;q)_n=\dfrac{(a;q)_{\infty}}{(aq^n;q)_{\infty}}\stackrel{n \in \mathbb{Z}^+}{=} \displaystyle\prod_{j=0}^{n-1} (1-aq^j)$$ $$(a;q)_{\infty} = \displaystyle\prod_{j=0}^{\infty} (1-aq^k)$$
$$(a;q)_{-n}=\dfrac{1} {(aq^{-n};q)_n} =\dfrac{1} {(1-aq^{-n})\ldots(1-aq^{-1})} = \dfrac{q^{\frac{n(n+1)}{2}}(-1)^n}{a^n (\frac{q}{a};q)_n}$$
- Qpochhammer(q,q)infty.png
Plot of $(q,q)_{\infty}$ for $q \in [-1,1]$.