Difference between revisions of "Thomae function"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
Line 1: Line 1:
Thomae's function is given by the formula
+
Thomae's function (sometimes called the popcorn function) is given by the formula
 
$$f(x) =\begin{cases}
 
$$f(x) =\begin{cases}
 
1  & \text{if } x= 0 \\
 
1  & \text{if } x= 0 \\
Line 29: Line 29:
  
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
 
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px">
<strong>Theorem:</strong> The [[Thomae function]] $f(x)$ is not [[Riemann integrable]] but it is [[Lebesgue integrable]] and  
+
<strong>Theorem:</strong> The [[Thomae function]] $f(x)$ is [[Riemann integral|Riemann integrable]] and  
 
$$\displaystyle\int_0^1 f(x) dx = 0.$$
 
$$\displaystyle\int_0^1 f(x) dx = 0.$$
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
Line 35: Line 35:
 
</div>
 
</div>
 
</div>
 
</div>
 +
 +
=Videos=
 +
[https://www.youtube.com/watch?v=HeIU5lLtHyQ Thomae Function by Douglas Harder]<br />
 +
[https://www.youtube.com/watch?v=Xu5Y6DqzN7Q Thomae Function by Bret Benesh]
 +
 +
=See also=
 +
[https://kbeanland.files.wordpress.com/2010/01/beanlandrobstevensonmonthly.pdf Modifications of Thomae's Function and Differentiability]
 +
 +
=References=
 +
[https://www.math.washington.edu/~morrow/334_10/thomae.pdf]
 +
[https://math.la.asu.edu/~kuiper/371files/ThomaeFunction.pdf]
 +
[http://math.stackexchange.com/questions/530097/proof-of-continuity-of-thomae-function-at-irrationals]

Revision as of 20:58, 11 April 2015

Thomae's function (sometimes called the popcorn function) is given by the formula $$f(x) =\begin{cases} 1 & \text{if } x= 0 \\ \tfrac1{q} & \text{if } x = \tfrac{p}{q}\\ 0 & \text{if } x \in \mathbb{R}-\mathbb{Q}. \end{cases}$$


Properties

Theorem: The Thomae function is continuous at all irrational numbers and discontinuous at all rational numbers.

Proof:

Theorem: The Thomae function has a (strict) local maximum at each rational number.

Proof:

Theorem: The Thomae function $f(x)$ is Riemann integrable and $$\displaystyle\int_0^1 f(x) dx = 0.$$

Proof:

Videos

Thomae Function by Douglas Harder
Thomae Function by Bret Benesh

See also

Modifications of Thomae's Function and Differentiability

References

[1] [2] [3]