Difference between revisions of "Dirichlet L-function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "=References= [http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/devlin.pdf How Euler discovered the zeta function]")
 
Line 1: Line 1:
 +
Let $\chi$ be a [[Dirichlet character]] with [[conductor]] $f$. A Dirichlet $L$-function is
 +
$$L(\chi,s)=\displaystyle\sum_n \dfrac{\chi(n)}{n^s} = \displaystyle\prod_{p \hspace{2pt} \mathrm{prime}} \dfrac{1}{1-\chi(p)p^{-s}}.$$
 +
 
=References=
 
=References=
 
[http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/devlin.pdf How Euler discovered the zeta function]
 
[http://empslocal.ex.ac.uk/people/staff/mrwatkin//zeta/devlin.pdf How Euler discovered the zeta function]

Revision as of 04:08, 12 April 2015

Let $\chi$ be a Dirichlet character with conductor $f$. A Dirichlet $L$-function is $$L(\chi,s)=\displaystyle\sum_n \dfrac{\chi(n)}{n^s} = \displaystyle\prod_{p \hspace{2pt} \mathrm{prime}} \dfrac{1}{1-\chi(p)p^{-s}}.$$

References

How Euler discovered the zeta function