Difference between revisions of "Binomial coefficient"
(→References) |
|||
Line 51: | Line 51: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
+ | =Videos= | ||
+ | [https://www.youtube.com/watch?v=OMr9ZF1jgNc Pascal's Triangle and the Binomial Coefficients] | ||
+ | [https://www.youtube.com/watch?v=MVmgsATTg2I Example of choose function (Binomial Coefficient)] | ||
=References= | =References= | ||
[http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_10.htm Abramowitz and Stegun]<br /> | [http://dualaud.net/specialfunctionswiki/abramowitz_and_stegun-1.03/page_10.htm Abramowitz and Stegun]<br /> | ||
[http://www.jstor.org/discover/10.2307/2975209?sid=21105065140641&uid=4&uid=70&uid=2&uid=3739256&uid=3739744&uid=2129 The Binomial Coefficient Function] | [http://www.jstor.org/discover/10.2307/2975209?sid=21105065140641&uid=4&uid=70&uid=2&uid=3739256&uid=3739744&uid=2129 The Binomial Coefficient Function] | ||
+ | [https://www.youtube.com/watch?v=lGow-vogneQ Binomial coefficients] |
Revision as of 21:26, 27 April 2015
The binomial coefficients are defined by the formula $${}_nC_k:={n \choose k} = \dfrac{n!}{(n-k)!k!}.$$
Properties
Proposition: $\displaystyle{n \choose k} = {n \choose {n-k}} = (-1)^k {{k-n-1} \choose k}$
Proof: █
Proposition: $\displaystyle{{n+1} \choose k} = {n \choose k} + {n \choose {k-1}}$
Proof: █
Proposition: ${n \choose 0} = {n \choose n} = 1$
Proof: █
Proposition: $1 + \displaystyle {n \choose 1} + {n \choose 2} + \ldots + {n \choose n} = 2^n$
Proof: █
Proposition: $1 - \displaystyle {n \choose 1} + {n \choose 2} - \ldots + (-1)^n {n \choose n} =0$
Proof: █
Theorem (Binomial Theorem): $(a+b)^n = \displaystyle\sum_{k=0}^n {n \choose k} a^k b^{n-k}$
Proof: █
Videos
Pascal's Triangle and the Binomial Coefficients Example of choose function (Binomial Coefficient)
References
Abramowitz and Stegun
The Binomial Coefficient Function
Binomial coefficients