Difference between revisions of "Antiderivative of coth"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> The following formula holds: $$\displaystyle\int \mathrm{coth}(z)dz=\log(\sinh(z)),$$ where $\ma...") |
|||
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong>Theorem:</strong> The following formula holds: | + | <strong>[[Antiderivative of coth|Theorem]]:</strong> The following formula holds: |
$$\displaystyle\int \mathrm{coth}(z)dz=\log(\sinh(z)),$$ | $$\displaystyle\int \mathrm{coth}(z)dz=\log(\sinh(z)),$$ | ||
where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]], $\log$ denotes the [[logarithm]], and $\sinh$ denotes the [[sinh|hyperbolic sine]]. | where $\mathrm{coth}$ denotes the [[coth|hyperbolic cotangent]], $\log$ denotes the [[logarithm]], and $\sinh$ denotes the [[sinh|hyperbolic sine]]. |
Revision as of 05:40, 16 May 2015
Theorem: The following formula holds: $$\displaystyle\int \mathrm{coth}(z)dz=\log(\sinh(z)),$$ where $\mathrm{coth}$ denotes the hyperbolic cotangent, $\log$ denotes the logarithm, and $\sinh$ denotes the hyperbolic sine.
Proof: █