Difference between revisions of "Takagi function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The Blancmange function is defined by $$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$")
 
Line 1: Line 1:
 
Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The Blancmange function is defined by
 
Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The Blancmange function is defined by
 
$$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$
 
$$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$
 +
 +
 +
<div align="center">
 +
<gallery>
 +
File:Blancmangefunction.png|Graph of $\mathrm{blanc}$ on $[0,1]$.
 +
</gallery>
 +
</div>

Revision as of 19:18, 17 May 2015

Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The Blancmange function is defined by $$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$