Difference between revisions of "Takagi function"
From specialfunctionswiki
(Created page with "Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The Blancmange function is defined by $$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$") |
|||
Line 1: | Line 1: | ||
Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The Blancmange function is defined by | Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The Blancmange function is defined by | ||
$$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$ | $$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$ | ||
+ | |||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Blancmangefunction.png|Graph of $\mathrm{blanc}$ on $[0,1]$. | ||
+ | </gallery> | ||
+ | </div> |
Revision as of 19:18, 17 May 2015
Define the function $s(x)=\min_{n \in \mathbb{Z}} |x-n|$. The Blancmange function is defined by $$\mathrm{blanc}(x)=\displaystyle\sum_{k=0}^{\infty} \dfrac{s(2^n x)}{2^n}.$$
- Blancmangefunction.png
Graph of $\mathrm{blanc}$ on $[0,1]$.