Difference between revisions of "Sine integral"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The sine integral is defined by
 
The sine integral is defined by
$$\mathrm{Si}(z) = \displaystyle\int_0^z \dfrac{\sin t}{t} dt; |\mathrm{arg} z|<\pi.$$
+
$$\mathrm{Si}(z) = \displaystyle\int_0^z \mathrm{sinc}(t) dt; |\mathrm{arg} z|<\pi,$$
 +
where $\mathrm{sinc}$ denotes the [[Sinc]] function.
  
 
<div align="center">
 
<div align="center">

Revision as of 05:28, 18 May 2015

The sine integral is defined by $$\mathrm{Si}(z) = \displaystyle\int_0^z \mathrm{sinc}(t) dt; |\mathrm{arg} z|<\pi,$$ where $\mathrm{sinc}$ denotes the Sinc function.

Videos

Laplace Transform of Sine Integral

References

$\ast$-integral functions