Difference between revisions of "Chi"
From specialfunctionswiki
Line 9: | Line 9: | ||
</div> | </div> | ||
− | {{:*-integral functions footer}} | + | <center>{{:*-integral functions footer}}</center> |
Revision as of 22:53, 19 May 2015
The hyperbolic cosine integral $\mathrm{chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula $$\mathrm{chi}(z)=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\mathrm{cosh}(t)-1}{t} dt,$$ where $\gamma$ denotes the Euler-Mascheroni constant, $\log$ denotes the logarithm, and $\mathrm{cosh}$ denotes the hyperbolic cosine function.
- Coshintegral.png
Graph of $\mathrm{chi}$ on $(0,5]$.