Difference between revisions of "Chi"

From specialfunctionswiki
Jump to: navigation, search
Line 9: Line 9:
 
</div>
 
</div>
  
{{:*-integral functions footer}}
+
<center>{{:*-integral functions footer}}</center>

Revision as of 22:53, 19 May 2015

The hyperbolic cosine integral $\mathrm{chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula $$\mathrm{chi}(z)=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\mathrm{cosh}(t)-1}{t} dt,$$ where $\gamma$ denotes the Euler-Mascheroni constant, $\log$ denotes the logarithm, and $\mathrm{cosh}$ denotes the hyperbolic cosine function.

<center>$\ast$-integral functions
</center>