Difference between revisions of "Fresnel C"

From specialfunctionswiki
Jump to: navigation, search
Line 17: Line 17:
 
</div>
 
</div>
  
{{:*-integral functions footer}}
+
<center>{{:*-integral functions footer}}</center>

Revision as of 22:53, 19 May 2015

The Fresnel C function is defined by the formula $$C(x)=\int_0^x \cos(t^2) dt.$$

Properties

Theorem: The following limit is known: $$\displaystyle\lim_{x \rightarrow \infty} C(x) = \displaystyle\int_0^{\infty} \cos(t^2)dt = \sqrt{ \dfrac{\pi}{8}}.$$

Proof:

<center>$\ast$-integral functions
</center>