Difference between revisions of "Bernoulli numbers"
From specialfunctionswiki
(Created page with "The Bernoulli numbers are the numbers $B_n$ in the following formula: $$\dfrac{z}{e^z-1} = \displaystyle\sum_{k=0}^{\infty} B_k \dfrac{z^k}{k!}.$$ The Bernoulli numbers are in...") |
(No difference)
|
Revision as of 00:08, 20 May 2015
The Bernoulli numbers are the numbers $B_n$ in the following formula: $$\dfrac{z}{e^z-1} = \displaystyle\sum_{k=0}^{\infty} B_k \dfrac{z^k}{k!}.$$ The Bernoulli numbers are intimately related to the Bernoulli polynomials.