Difference between revisions of "Polylogarithm"

From specialfunctionswiki
Jump to: navigation, search
Line 8: Line 8:
 
</gallery>
 
</gallery>
 
</div>
 
</div>
 +
 +
=Videos=
 +
[https://www.youtube.com/watch?v=6v60ivoC2z8 polylogarithm function]
  
 
=Properties=
 
=Properties=
 
{{:Lerch transcendent polylogarithm}}
 
{{:Lerch transcendent polylogarithm}}
 
{{:Legendre chi in terms of polylogarithm}}
 
{{:Legendre chi in terms of polylogarithm}}

Revision as of 00:18, 20 May 2015

The polylogarithm $\mathrm{Li}_s$ is defined by the formula $$\mathrm{Li}_s(z) = \sum_{k=1}^{\infty} \dfrac{z^k}{k^s} = z + \dfrac{z^2}{2^s} + \dfrac{z^3}{3^s} + \ldots$$ A special case of the polylogarithm with $s=2$ is called a dilogarithm.

Videos

polylogarithm function

Properties

Theorem

The following formula holds: $$\Phi(z,n,1)=\dfrac{\mathrm{Li}_n(z)}{z},$$ where $\Phi$ denotes the Lerch transcendent and $\mathrm{Li_n}$ denotes the polylogarithm.

Proof

References

Theorem

The following formula holds: $$\chi_{\nu}(z)=\dfrac{1}{2}[\mathrm{Li}_{\nu}(z)-\mathrm{Li}_{\nu}(-z)] = \mathrm{Li}_{\nu}(z)-2^{-\nu}\mathrm{Li}_{\nu}(z^2),$$ where $\chi$ denotes the Legendre chi function and $\mathrm{Li}_{\nu}$ denotes the polylogarithm.

Proof

References