Difference between revisions of "Rodrigues formula for Meixner polynomial"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> (Rodrigues Formula) The following formula holds...")
 
Line 2: Line 2:
 
<strong>[[Rodrigues formula for Meixner polynomial|Theorem]]:</strong> ([[Rodrigues Formula]]) The following formula holds:
 
<strong>[[Rodrigues formula for Meixner polynomial|Theorem]]:</strong> ([[Rodrigues Formula]]) The following formula holds:
 
$$\dfrac{\beta^{\overline{x}}c^x}{x!} M_n(x;\beta,c)= \nabla^n \left[ \dfrac{(\beta+n)^{\overline{x}}}{x!}c^x \right],$$
 
$$\dfrac{\beta^{\overline{x}}c^x}{x!} M_n(x;\beta,c)= \nabla^n \left[ \dfrac{(\beta+n)^{\overline{x}}}{x!}c^x \right],$$
where $\beta^{\overline{x}}$ denotes a [[rising factorial]] and $M_n$ is a [[Meixner polynomial]].
+
where $\nabla$ denotes the backwards difference operator $\nabla f = f(x)-f(x-1)$, $\beta^{\overline{x}}$ denotes a [[rising factorial]] and $M_n$ is a [[Meixner polynomial]].
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 14:39, 20 May 2015

Theorem: (Rodrigues Formula) The following formula holds: $$\dfrac{\beta^{\overline{x}}c^x}{x!} M_n(x;\beta,c)= \nabla^n \left[ \dfrac{(\beta+n)^{\overline{x}}}{x!}c^x \right],$$ where $\nabla$ denotes the backwards difference operator $\nabla f = f(x)-f(x-1)$, $\beta^{\overline{x}}$ denotes a rising factorial and $M_n$ is a Meixner polynomial.

Proof: