Difference between revisions of "Rodrigues formula for Meixner polynomial"
From specialfunctionswiki
(Created page with "<div class="toccolours mw-collapsible mw-collapsed"> <strong>Theorem:</strong> (Rodrigues Formula) The following formula holds...") |
|||
Line 2: | Line 2: | ||
<strong>[[Rodrigues formula for Meixner polynomial|Theorem]]:</strong> ([[Rodrigues Formula]]) The following formula holds: | <strong>[[Rodrigues formula for Meixner polynomial|Theorem]]:</strong> ([[Rodrigues Formula]]) The following formula holds: | ||
$$\dfrac{\beta^{\overline{x}}c^x}{x!} M_n(x;\beta,c)= \nabla^n \left[ \dfrac{(\beta+n)^{\overline{x}}}{x!}c^x \right],$$ | $$\dfrac{\beta^{\overline{x}}c^x}{x!} M_n(x;\beta,c)= \nabla^n \left[ \dfrac{(\beta+n)^{\overline{x}}}{x!}c^x \right],$$ | ||
− | where $\beta^{\overline{x}}$ denotes a [[rising factorial]] and $M_n$ is a [[Meixner polynomial]]. | + | where $\nabla$ denotes the backwards difference operator $\nabla f = f(x)-f(x-1)$, $\beta^{\overline{x}}$ denotes a [[rising factorial]] and $M_n$ is a [[Meixner polynomial]]. |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 14:39, 20 May 2015
Theorem: (Rodrigues Formula) The following formula holds: $$\dfrac{\beta^{\overline{x}}c^x}{x!} M_n(x;\beta,c)= \nabla^n \left[ \dfrac{(\beta+n)^{\overline{x}}}{x!}c^x \right],$$ where $\nabla$ denotes the backwards difference operator $\nabla f = f(x)-f(x-1)$, $\beta^{\overline{x}}$ denotes a rising factorial and $M_n$ is a Meixner polynomial.
Proof: █