Difference between revisions of "Weierstrass nowhere differentiable function"
From specialfunctionswiki
(Created page with "The Weierstrass function is $$f(x)=\displaystyle\sum_{k=0}^{\infty} a^k \cos(b^n\pi x),$$ where $0<a<1$ and $b \in \{1,3,5,7,9,\ldots\}$ such that $ab > 1+\dfrac{3}{2}\pi$. =...") |
|||
Line 5: | Line 5: | ||
=Properties= | =Properties= | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
− | <strong>Theorem:</strong> The Weierstrass function $f$ is [[continuous]] everywhere but [[differentiable]] nowhere. | + | <strong>Theorem:</strong> The Weierstrass function $f$ is [[continuous]] everywhere but [[derivative|differentiable]] nowhere. |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 20:39, 21 May 2015
The Weierstrass function is $$f(x)=\displaystyle\sum_{k=0}^{\infty} a^k \cos(b^n\pi x),$$ where $0<a<1$ and $b \in \{1,3,5,7,9,\ldots\}$ such that $ab > 1+\dfrac{3}{2}\pi$.
Properties
Theorem: The Weierstrass function $f$ is continuous everywhere but differentiable nowhere.
Proof: █