Difference between revisions of "Weierstrass nowhere differentiable function"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Weierstrass function is $$f(x)=\displaystyle\sum_{k=0}^{\infty} a^k \cos(b^n\pi x),$$ where $0<a<1$ and $b \in \{1,3,5,7,9,\ldots\}$ such that $ab > 1+\dfrac{3}{2}\pi$. =...")
 
Line 5: Line 5:
 
=Properties=
 
=Properties=
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">
<strong>Theorem:</strong> The Weierstrass function $f$ is [[continuous]] everywhere but [[differentiable]] nowhere.
+
<strong>Theorem:</strong> The Weierstrass function $f$ is [[continuous]] everywhere but [[derivative|differentiable]] nowhere.
 
<div class="mw-collapsible-content">
 
<div class="mw-collapsible-content">
 
<strong>Proof:</strong> █  
 
<strong>Proof:</strong> █  
 
</div>
 
</div>
 
</div>
 
</div>

Revision as of 20:39, 21 May 2015

The Weierstrass function is $$f(x)=\displaystyle\sum_{k=0}^{\infty} a^k \cos(b^n\pi x),$$ where $0<a<1$ and $b \in \{1,3,5,7,9,\ldots\}$ such that $ab > 1+\dfrac{3}{2}\pi$.

Properties

Theorem: The Weierstrass function $f$ is continuous everywhere but differentiable nowhere.

Proof: