Difference between revisions of "Kelvin bei"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The $\mathrm{bei}_{\nu}$ function is defined as $$\mathrm{ber}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( x e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Ie}$ denotes the i...")
 
Line 1: Line 1:
 
The $\mathrm{bei}_{\nu}$ function is defined as
 
The $\mathrm{bei}_{\nu}$ function is defined as
 
$$\mathrm{ber}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( x e^{\frac{3\pi i}{4}} \right),$$
 
$$\mathrm{ber}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( x e^{\frac{3\pi i}{4}} \right),$$
where $\mathrm{Ie}$ denotes the [[imaginary part]] of a complex number and $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]].
+
where $\mathrm{Ie}$ denotes the [[imaginary part]] of a [[complex number]] and $J_{\nu}$ denotes the [[Bessel J sub nu|Bessel function of the first kind]].

Revision as of 23:23, 21 May 2015

The $\mathrm{bei}_{\nu}$ function is defined as $$\mathrm{ber}(z)=\mathrm{Im} \hspace{2pt} J_{\nu} \left( x e^{\frac{3\pi i}{4}} \right),$$ where $\mathrm{Ie}$ denotes the imaginary part of a complex number and $J_{\nu}$ denotes the Bessel function of the first kind.