Difference between revisions of "Bohr-Mollerup theorem"
From specialfunctionswiki
Line 1: | Line 1: | ||
<div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | <div class="toccolours mw-collapsible mw-collapsed" style="width:800px"> | ||
− | <strong>[[Bohr-Mollerup theorem|Theorem]]:</strong> (Bohr-Mollerup) The gamma function is the unique function $f$ such that $f(1)=1$, $f(x+1)=xf(x)$ for $x>0$, and $f$ is [[logarithmically convex]]. | + | <strong>[[Bohr-Mollerup theorem|Theorem]]:</strong> (Bohr-Mollerup) The [[gamma function]] is the unique function $f$ such that $f(1)=1$, $f(x+1)=xf(x)$ for $x>0$, and $f$ is [[logarithmically convex]]. |
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 19:38, 6 June 2015
Theorem: (Bohr-Mollerup) The gamma function is the unique function $f$ such that $f(1)=1$, $f(x+1)=xf(x)$ for $x>0$, and $f$ is logarithmically convex.
Proof: █