Difference between revisions of "Elliptic function"
m (Tom moved page Elliptic functions to Elliptic function) |
|||
Line 32: | Line 32: | ||
<div class="toccolours mw-collapsible mw-collapsed"> | <div class="toccolours mw-collapsible mw-collapsed"> | ||
<strong>Theorem:</strong> The [[contour integral]] of an [[elliptic function]] taken along the boundary of any [[cell]] equals zero. | <strong>Theorem:</strong> The [[contour integral]] of an [[elliptic function]] taken along the boundary of any [[cell]] equals zero. | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The sum of the [[residue|residues]] of an [[elliptic function]] at its [[pole|poles]] in any [[period parallelogram]] equals zero. | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> The number of [[zero|zeros]] of an [[elliptic function]] in and [[period parallelogram]] equals the number of [[pole|poles]], counted with multiplicity. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> █ | <strong>Proof:</strong> █ | ||
</div> | </div> | ||
</div> | </div> |
Revision as of 21:27, 6 June 2015
A function $f$ is called elliptic if it is a doubly periodic function and it is meromorphic.
Properties
Theorem: All constant functions are elliptic functions.
Proof: █
Theorem: A nonconstant elliptic function has a fundamental pair of periods.
Proof: █
Theorem: If an elliptic function $f$ has no poles in some period parallelogram, then $f$ is a constant function.
Proof: █
Theorem: If an elliptic function $f$ has no zeros in some period parallelogram, then $f$ is a constant function.
Proof: █
Theorem: The contour integral of an elliptic function taken along the boundary of any cell equals zero.
Proof: █
Theorem: The sum of the residues of an elliptic function at its poles in any period parallelogram equals zero.
Proof: █
Theorem: The number of zeros of an elliptic function in and period parallelogram equals the number of poles, counted with multiplicity.
Proof: █