Difference between revisions of "Spherical Bessel y"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$y_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}} Y_{\nu+\frac{1}{2}}(z),$$
 
$$y_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}} Y_{\nu+\frac{1}{2}}(z),$$
 
where $Y_{\nu}$ denotes the [[Bessel Y sub nu|Bessel function of the second kind]].
 
where $Y_{\nu}$ denotes the [[Bessel Y sub nu|Bessel function of the second kind]].
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The following formula holds for non-negative integers $n$:
 +
$$y_n(z)=(-1)^{n+1}z^n \left( \dfrac{1}{z} \dfrac{d}{dz} \right)^n \left( \dfrac{\cos z}{z} \right).$$
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong> █
 +
</div>
 +
</div>
  
 
<center>{{:Bessel functions footer}}</center>
 
<center>{{:Bessel functions footer}}</center>

Revision as of 06:35, 10 June 2015

The spherical Bessel function of the second kind is $$y_{\nu}(z)=\sqrt{\dfrac{\pi}{2z}} Y_{\nu+\frac{1}{2}}(z),$$ where $Y_{\nu}$ denotes the Bessel function of the second kind.

Properties

Theorem: The following formula holds for non-negative integers $n$: $$y_n(z)=(-1)^{n+1}z^n \left( \dfrac{1}{z} \dfrac{d}{dz} \right)^n \left( \dfrac{\cos z}{z} \right).$$

Proof:

<center>Bessel functions
</center>