Difference between revisions of "Stirling numbers of the second kind"

From specialfunctionswiki
Jump to: navigation, search
(Created page with "The Stirling numbers of the second kind, commonly written as $S(n,k)$ or $\begin{Bmatrix}n \\ k\end{Bmatrix}$ are given by $$S(n,k)=\dfrac{1}{k!} \displaystyle\sum_{j=0}^{k} (...")
(No difference)

Revision as of 04:22, 27 June 2015

The Stirling numbers of the second kind, commonly written as $S(n,k)$ or $\begin{Bmatrix}n \\ k\end{Bmatrix}$ are given by $$S(n,k)=\dfrac{1}{k!} \displaystyle\sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^n,$$ where ${k \choose j}$ denotes a binomial coefficient.