Difference between revisions of "Hadamard gamma"

From specialfunctionswiki
Jump to: navigation, search
(References)
Line 29: Line 29:
 
=References=
 
=References=
 
[http://www.luschny.de/math/factorial/hadamard/HadamardsGammaFunctionMJ.html Is the Gamma function misdefined?]<br />
 
[http://www.luschny.de/math/factorial/hadamard/HadamardsGammaFunctionMJ.html Is the Gamma function misdefined?]<br />
[http://www.jstor.org/discover/10.2307/2309786?sid=21105065140641&uid=3739256&uid=2129&uid=70&uid=3739744&uid=4&uid=2 Leonhard Euler's Integral: A Historical Profile of the Gamma Function]
+
[http://www.jstor.org/discover/10.2307/2309786?sid=21105065140641&uid=3739256&uid=2129&uid=70&uid=3739744&uid=4&uid=2 Leonhard Euler's Integral: A Historical Profile of the Gamma Function]<br />
 +
[http://link.springer.com/article/10.1007%2Fs12188-008-0009-5 A superadditive property of Hadamard's gamma function]<br />

Revision as of 07:25, 3 July 2015

The Hadamard gamma function is defined by the formula $$H(x)=\dfrac{1}{\Gamma(1-x)} \dfrac{d}{dx} \log \left( \dfrac{\Gamma(\frac{1}{2}-\frac{x}{2})}{\Gamma(1-\frac{x}{2})} \right),$$ where $\Gamma$ denotes the gamma function.

Properties

Theorem: We can write $$H(x)=\dfrac{\psi(1-\frac{x}{2})-\psi(\frac{1}{2}-\frac{x}{2})}{2\Gamma(1-x)},$$ where $\psi$ is the digamma function.

Proof: proof goes here █

Theorem: The function $H$ is an entire function.

Proof: proof goes here █

Theorem: The function $H$ satisfies the formula $$H(x+1)=xH(x)+\dfrac{1}{\Gamma(1-x)}.$$

Proof: proof goes here █

References

Is the Gamma function misdefined?
Leonhard Euler's Integral: A Historical Profile of the Gamma Function
A superadditive property of Hadamard's gamma function