Difference between revisions of "Hadamard gamma"
(→References) |
(→Properties) |
||
Line 22: | Line 22: | ||
<strong>Theorem:</strong> The function $H$ satisfies the formula | <strong>Theorem:</strong> The function $H$ satisfies the formula | ||
$$H(x+1)=xH(x)+\dfrac{1}{\Gamma(1-x)}.$$ | $$H(x+1)=xH(x)+\dfrac{1}{\Gamma(1-x)}.$$ | ||
+ | <div class="mw-collapsible-content"> | ||
+ | <strong>Proof:</strong> proof goes here █ | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <div class="toccolours mw-collapsible mw-collapsed"> | ||
+ | <strong>Theorem:</strong> Define $\alpha_0 \approx 1.5031\ldots$ to be the only solution of the equation $H(2t)=2H(t)$. Then the inequality $H(x)+H(y) \leq H(x+y)$ holds for all real numbers $x,y$ with $x,y \geq \alpha$ if and only if $\alpha \geq \alpha_0$. | ||
<div class="mw-collapsible-content"> | <div class="mw-collapsible-content"> | ||
<strong>Proof:</strong> proof goes here █ | <strong>Proof:</strong> proof goes here █ |
Revision as of 07:28, 3 July 2015
The Hadamard gamma function is defined by the formula $$H(x)=\dfrac{1}{\Gamma(1-x)} \dfrac{d}{dx} \log \left( \dfrac{\Gamma(\frac{1}{2}-\frac{x}{2})}{\Gamma(1-\frac{x}{2})} \right),$$ where $\Gamma$ denotes the gamma function.
Properties
Theorem: We can write $$H(x)=\dfrac{\psi(1-\frac{x}{2})-\psi(\frac{1}{2}-\frac{x}{2})}{2\Gamma(1-x)},$$ where $\psi$ is the digamma function.
Proof: proof goes here █
Theorem: The function $H$ is an entire function.
Proof: proof goes here █
Theorem: The function $H$ satisfies the formula $$H(x+1)=xH(x)+\dfrac{1}{\Gamma(1-x)}.$$
Proof: proof goes here █
Theorem: Define $\alpha_0 \approx 1.5031\ldots$ to be the only solution of the equation $H(2t)=2H(t)$. Then the inequality $H(x)+H(y) \leq H(x+y)$ holds for all real numbers $x,y$ with $x,y \geq \alpha$ if and only if $\alpha \geq \alpha_0$.
Proof: proof goes here █
References
Is the Gamma function misdefined?
Leonhard Euler's Integral: A Historical Profile of the Gamma Function
A superadditive property of Hadamard's gamma function