Difference between revisions of "Modified Bessel I"

From specialfunctionswiki
Jump to: navigation, search
(Properties)
(Properties)
Line 10: Line 10:
  
 
=Properties=
 
=Properties=
{{:Relationship between Bessel I sub 1/2 and cosh}}
+
{{:Relationship between Bessel I sub -1/2 and cosh}}
 
{{:Relationship between Bessel I sub 1/2 and sinh}}
 
{{:Relationship between Bessel I sub 1/2 and sinh}}
 
<div class="toccolours mw-collapsible mw-collapsed">
 
<div class="toccolours mw-collapsible mw-collapsed">

Revision as of 00:32, 5 July 2015

The modified Bessel function of the first kind is defined by $$I_{\nu}(z)=i^{-\nu}J_{\nu}(iz),$$ where $J_{\nu}$ is the Bessel function of the first kind.

Properties

Theorem

The following formula holds: $$I_{-\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}} \cosh(z),$$ where $I_{-\frac{1}{2}}$ denotes the modified Bessel function of the first kind and $\cosh$ denotes the hyperbolic cosine.

Proof

References

Theorem

The following formula holds: $$I_{\frac{1}{2}}(z)=\sqrt{\dfrac{2}{\pi z}}\sinh(z),$$ where $I_{\frac{1}{2}}$ denotes the modified Bessel function of the first kind and $\sinh$ denotes the hyperbolic sine.

Proof

References

Proposition: The following formula holds: $$I_{\nu}(z)=\displaystyle\sum_{k=0}^{\infty} J_{\nu+k}(z) \dfrac{z^k}{k!},$$ where $J_{\nu}$ denotes the Bessel function of the first kind.

Proof:

  1. REDIRECT Relationship between Bessel I and Bessel J

Theorem

The following formula holds: $$\mathrm{Bi}(z)=\sqrt{\dfrac{z}{3}} \left( I_{\frac{1}{3}}\left(\frac{2}{3}x^{\frac{3}{2}} \right) + I_{-\frac{1}{3}} \left( \frac{2}{3} x^{\frac{3}{2}} \right) \right),$$ where $\mathrm{Bi}$ denotes the Airy Bi function and $I_{\nu}$ denotes the modified Bessel $I$.

Proof

References

<center>Bessel functions
</center>