Difference between revisions of "Elliptic E"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
If $m=k^2$ we define the complete elliptic integral of the second kind, $E$, to be
 
If $m=k^2$ we define the complete elliptic integral of the second kind, $E$, to be
 
$$E(k)=E(m)=\displaystyle\int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2 \theta} d\theta.$$
 
$$E(k)=E(m)=\displaystyle\int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2 \theta} d\theta.$$
The incomplete elliptic integral of the second kind is
 
$$E(\phi|k)=E(\phi|m)=\displaystyle\int_0^{\phi} \sqrt{1-m\sin^2 \theta}d\theta.$$
 
  
 
<div align="center">
 
<div align="center">

Revision as of 18:10, 25 July 2015

If $m=k^2$ we define the complete elliptic integral of the second kind, $E$, to be $$E(k)=E(m)=\displaystyle\int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2 \theta} d\theta.$$


References

"Special Functions" by Leon Hall