Difference between revisions of "Elliptic E"
From specialfunctionswiki
Line 1: | Line 1: | ||
If $m=k^2$ we define the complete elliptic integral of the second kind, $E$, to be | If $m=k^2$ we define the complete elliptic integral of the second kind, $E$, to be | ||
$$E(k)=E(m)=\displaystyle\int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2 \theta} d\theta.$$ | $$E(k)=E(m)=\displaystyle\int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2 \theta} d\theta.$$ | ||
− | |||
− | |||
<div align="center"> | <div align="center"> |
Revision as of 18:10, 25 July 2015
If $m=k^2$ we define the complete elliptic integral of the second kind, $E$, to be $$E(k)=E(m)=\displaystyle\int_0^{\frac{\pi}{2}} \sqrt{1-k^2\sin^2 \theta} d\theta.$$
- Domaincoloringelliptice.png
Domain coloring of $E(m)$.