Difference between revisions of "Fibonacci zeta function"

From specialfunctionswiki
Jump to: navigation, search
Line 2: Line 2:
 
$$F(s)=\displaystyle\sum_{k=1}^{\infty} f_n^{-s},$$
 
$$F(s)=\displaystyle\sum_{k=1}^{\infty} f_n^{-s},$$
 
where $f_n$ denotes the $n$th term in the [[Fibonacci sequence]].
 
where $f_n$ denotes the $n$th term in the [[Fibonacci sequence]].
 +
 +
=Properties=
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The number $F(1)$ is an [[irrational number]].
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
 +
 +
<div class="toccolours mw-collapsible mw-collapsed">
 +
<strong>Theorem:</strong> The number $F(2k)$ is a [[transcendental number]] for all $k=1,2,3,\ldots$.
 +
<div class="mw-collapsible-content">
 +
<strong>Proof:</strong>  █
 +
</div>
 +
</div>
  
 
=References=
 
=References=
 
[http://www.mast.queensu.ca/~murty/fibon-tifr.pdf]
 
[http://www.mast.queensu.ca/~murty/fibon-tifr.pdf]

Revision as of 18:20, 25 July 2015

The Fibonacci zeta function is defined by $$F(s)=\displaystyle\sum_{k=1}^{\infty} f_n^{-s},$$ where $f_n$ denotes the $n$th term in the Fibonacci sequence.

Properties

Theorem: The number $F(1)$ is an irrational number.

Proof:

Theorem: The number $F(2k)$ is a transcendental number for all $k=1,2,3,\ldots$.

Proof:

References

[1]