Difference between revisions of "Cosine integral"
From specialfunctionswiki
Line 5: | Line 5: | ||
<gallery> | <gallery> | ||
File:Ci.png|Graph of $\mathrm{arccos}$ on $(0,20)$. | File:Ci.png|Graph of $\mathrm{arccos}$ on $(0,20)$. | ||
+ | File:Domain coloring cosine integral.png|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{Ci}$. | ||
</gallery> | </gallery> | ||
</div> | </div> |
Revision as of 18:40, 25 July 2015
The cosine integral is defined by $$\mathrm{Ci}(z) = -\displaystyle\int_z^{\infty} \dfrac{\cos t}{t} dt ; |\mathrm{arg} z|<\pi.$$
- Ci.png
Graph of $\mathrm{arccos}$ on $(0,20)$.
Domain coloring of analytic continuation of $\mathrm{Ci}$.
Videos
Laplace transform of cosine integral