Difference between revisions of "Chi"

From specialfunctionswiki
Jump to: navigation, search
Line 6: Line 6:
 
<gallery>
 
<gallery>
 
File:Coshintegral.png|Graph of $\mathrm{chi}$ on $(0,5]$.
 
File:Coshintegral.png|Graph of $\mathrm{chi}$ on $(0,5]$.
File:Domain coloring hyperbolic cosine integral.png|[[Domain coloring]] of [[analytic continuation]] of $\mathm{chi}$.
+
File:Domain coloring hyperbolic cosine integral.png|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{chi}$.
 
</gallery>
 
</gallery>
 
</div>
 
</div>
  
 
<center>{{:*-integral functions footer}}</center>
 
<center>{{:*-integral functions footer}}</center>

Revision as of 18:43, 25 July 2015

The hyperbolic cosine integral $\mathrm{chi} \colon (0,\infty) \rightarrow \mathbb{R}$ is defined by the formula $$\mathrm{chi}(z)=\gamma + \log(z) + \displaystyle\int_0^z \dfrac{\mathrm{cosh}(t)-1}{t} dt,$$ where $\gamma$ denotes the Euler-Mascheroni constant, $\log$ denotes the logarithm, and $\mathrm{cosh}$ denotes the hyperbolic cosine function.

<center>$\ast$-integral functions
</center>