Difference between revisions of "Shi"

From specialfunctionswiki
Jump to: navigation, search
Line 1: Line 1:
 
The hyperbolic sine integral is defined by the formula
 
The hyperbolic sine integral is defined by the formula
 
$$\mathrm{Shi}(z)=\displaystyle\int_0^z \dfrac{\mathrm{sinh}(t)}{t} dt.$$
 
$$\mathrm{Shi}(z)=\displaystyle\int_0^z \dfrac{\mathrm{sinh}(t)}{t} dt.$$
 +
 +
<div align="center">
 +
<gallery>
 +
File:Plot of hyperbolic sinh integral.png|Plot of $\mathrm{Shi}$ on $[-10,10]$.
 +
File:Domain coloring hyperbolic sine integral.png
 +
|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{Shi}$.
 +
</gallery>
 +
</div>
  
 
<center>{{:*-integral functions footer}}</center>
 
<center>{{:*-integral functions footer}}</center>

Revision as of 18:46, 25 July 2015

The hyperbolic sine integral is defined by the formula $$\mathrm{Shi}(z)=\displaystyle\int_0^z \dfrac{\mathrm{sinh}(t)}{t} dt.$$

<center>$\ast$-integral functions
</center>