Difference between revisions of "Shi"
From specialfunctionswiki
Line 5: | Line 5: | ||
<gallery> | <gallery> | ||
File:Plot of hyperbolic sinh integral.png|Plot of $\mathrm{Shi}$ on $[-10,10]$. | File:Plot of hyperbolic sinh integral.png|Plot of $\mathrm{Shi}$ on $[-10,10]$. | ||
− | File:Domain coloring hyperbolic sine integral.png | + | File:Domain coloring hyperbolic sine integral.png|[[Domain coloring]] of [[analytic continuation]] of $\mathrm{Shi}$. |
− | |[[Domain coloring]] of [[analytic continuation]] of $\mathrm{Shi}$. | ||
</gallery> | </gallery> | ||
</div> | </div> | ||
<center>{{:*-integral functions footer}}</center> | <center>{{:*-integral functions footer}}</center> |
Revision as of 18:46, 25 July 2015
The hyperbolic sine integral is defined by the formula $$\mathrm{Shi}(z)=\displaystyle\int_0^z \dfrac{\mathrm{sinh}(t)}{t} dt.$$
Domain coloring of analytic continuation of $\mathrm{Shi}$.