Difference between revisions of "Fresnel C"

From specialfunctionswiki
Jump to: navigation, search
(Videos)
Line 5: Line 5:
 
<gallery>
 
<gallery>
 
File:Fresnel.png| Fresnel integrals on $\mathbb{R}$.
 
File:Fresnel.png| Fresnel integrals on $\mathbb{R}$.
 +
File:Domain coloring fresnel c.png|[[Domain coloring]] of [[analytic continuation]] of Fresnel $C$.
 
</gallery>
 
</gallery>
 
</div>
 
</div>

Revision as of 18:53, 25 July 2015

The Fresnel C function is defined by the formula $$C(x)=\int_0^x \cos(t^2) dt.$$

Properties

Theorem: The following limit is known: $$\displaystyle\lim_{x \rightarrow \infty} C(x) = \displaystyle\int_0^{\infty} \cos(t^2)dt = \sqrt{ \dfrac{\pi}{8}}.$$

Proof:

Videos

How to integrate cos(x^2) - The Fresnel Integral C(x)

<center>$\ast$-integral functions
</center>