Difference between revisions of "Greatest prime factor"
From specialfunctionswiki
Line 3: | Line 3: | ||
$\mathrm{gpf}(n) = \{\mathrm{greatest \hspace{2pt} prime \hspace{2pt} factor \hspace{2pt} of \hspace{2pt}}n\}.$ | $\mathrm{gpf}(n) = \{\mathrm{greatest \hspace{2pt} prime \hspace{2pt} factor \hspace{2pt} of \hspace{2pt}}n\}.$ | ||
</center> | </center> | ||
+ | |||
+ | <div align="center"> | ||
+ | <gallery> | ||
+ | File:Gpfplot,n=0..100.png|Plot of $\mathrm{gpf}$ for $n=0,\ldots,100$. | ||
+ | File:Gpfplot,n=0..1000.png|Plot of $\mathrm{gpf}$ for $n=0,\ldots,1000$. | ||
+ | File:Gpfplot,n=0..10000.png|Plot of $\mathrm{gpf}$ for $n=0,\ldots,10000$. | ||
+ | </gallery> | ||
+ | </div> |
Revision as of 21:51, 16 August 2015
Define the greatest prime factor function $\mathrm{gpf}\colon \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ by
$\mathrm{gpf}(n) = \{\mathrm{greatest \hspace{2pt} prime \hspace{2pt} factor \hspace{2pt} of \hspace{2pt}}n\}.$
- Gpfplot,n=0..100.png
Plot of $\mathrm{gpf}$ for $n=0,\ldots,100$.
- Gpfplot,n=0..1000.png
Plot of $\mathrm{gpf}$ for $n=0,\ldots,1000$.
- Gpfplot,n=0..10000.png
Plot of $\mathrm{gpf}$ for $n=0,\ldots,10000$.